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Solution 8

1. Let A = {aij} be an n× n matrix. Show that

|Ax| ≤
√∑

i,j

a2ij |x|.

Solution. Let y = Ax. We have

yi =
∑
j

aijxj , i = 1, · · · , n .

By Cauchy-Schwarz Inequality,

|yi| ≤
√∑

j

a2ij

√∑
j

x2j .

Taking square,

y2i ≤
∑
j

a2ij
∑
j

x2j .

Summing over i, ∑
i

y2i ≤
∑
i,j

a2ij
∑
j

x2j ,

and the result follows by taking root.

Note. This result was used in the proof of Proposition 3.5.

2. Let A = (aij) be an n×n matrix. Show that the matrix I +A is invertible if
∑

i,j a
2
ij < 1.

Give an example showing that I +A could become singular when
∑

i,j a
2
ij = 1.

Solution. Let Φ(x) = Ix+Ax so that Ψ(x) = Ax for x ∈ Rn. By the previous problem,

|Ψ(x1)−Ψ(x2)| = |A(x1 − x2)| ≤
√∑

i,j

a2ij |x| .

Take γ =
√∑

i,j a
2
ij < 1. Ψ is a contraction and there is only one root of the equation

Φ(x) = 0 in the ball Br(0). However, since we already know Φ(0) = 0, 0 is the unique root.
Now, we claim that I+A is non-singular, for there is some z ∈ Rn satisfying (I+A)z = 0,
we can find a small number α such that αz ∈ Br(0). By what we have just shown, αz = 0
so z = 0, that is, I +A is non-singular and thus invertible.

The sharpness of the condition
∑
a2ij < 1 can be seen from considering the 2 × 2-matrix

A where all aij = 0 except a22 = −1.

Note. See how linearity plays its role in the proof.

3. Let f : R → R be C2 and f(x0) = 0, f ′(x0) 6= 0. Show that there exists some ρ > 0 such
that

Tx = x− f(x)

f ′(x)
, x ∈ (x0 − ρ, x0 + ρ),
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is a contraction. This provides a justification for Newton’s method in finding roots for an
equation.

Solution. T ′(x) =
f(x)f ′′(x)

f ′(x)2
. Since f is C2 and f(x0) = 0, f ′(x0) 6= 0, it follows that T

is C1 in a neighborhood of x0 with T (x0) = x0, T
′(x0) = 0 and there exists some ρ > 0

|T ′(x)| ≤ 1

2
, x ∈ [x0 − ρ, x0 + ρ].

As a result, T is a contraction in [x0−ρ, x0 +ρ]. By Contraction Mapping Principle, there
is a fixed point for T . From the definition of T , this fixed point is a root for the equation
f(x) = 0.

4. Consider the iteration
xn+1 = αxn(1− xn), x1 ∈ [0, 1] .

Find

(a) The range of α so that {xn} remains in [0, 1] .

(b) The range of α so that the iteration has a unique fixed point 0 in [0, 1].

(c) Show that for α ∈ [0, 1] the fixed point 0 is attracting in the sense: xn → 0 whenever
x0 ∈ [0, 1].

Solution. Let Tx = αx(1−x). The max of T attains at 1/2 so the maximal value is α/4.
Therefore, the range of α is [0, 4] so that T maps [0, 1] to itself. Next, 0 is always a fixed
point of T . To get no other, we set x = αx(1−x) and solve for x and get x = (α−1)/α. So
there is no other fixed point if α ∈ [0, 1]. Finally, it is clear that T becomes a contraction
when α ∈ [0, 1), so the sequence {xn} with x0 ∈ [0, 1] , xn = Tnx0, always tends to 0 as
n → ∞. Although T is not a contraction when α = 1, one can still use elementary mean
(that is, {xn} is always decreasing,) to show that 0 is an attracting fixed point.

5. Show that every continuous function from [0, 1] to itself admits a fixed point. Here we
don’t need it a contraction. Suggestion: Consider the sign of g(x) = f(x)−x at 0, 1 where
f is the given function.

Solution. Let f ∈ C[0, 1]. Clearly, if f(0) = 0, then 0 is a fixed point. So assume
f(0) 6= 0. Here we take f(0) > 0. Consider the continuous function g(x) = f(x) − x. We
have g(0) = f(0) > 0 and g(1) = f(1) − 1 ≤ 0. If equality holds, then f(1) = 1, 1 is a
fixed point. If inequality holds, that is, g(1) < 0, by the mean-value theorem there is some
ξ ∈ (0, 1) such that g(ξ) = 0, that is, f(ξ)− ξ = 0, so ξ is a fixed point. The case f(0) < 0
can be handled similarly.

Note. This example shows that every continuous function from [0, 1] to itself, not only
contractions, admits a least one fixed point. (But not necessarily unique.) Similar result
holds for all continuous maps on a compact, convex subset in Rn to itself. It is called
Brouwer’s fixed point theorem.

6. Let f be continuously differentiable on [a, b]. Show that it has a differentiable inverse if
and only if its derivative is either positive or negative everywhere. This is 2060 stuff.

Solution. ⇒. Let g be the inverse of f . When g is differentiable, we can use the
chain rule in the relation g(f(x)) = x to get g′(f(x))f ′(x) = 1, which implies that f ′(x)
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never vanishes. Since f ′ is continuous, if f ′(x0) > 0 at some x0, we claim f ′ is positive
everywhere. Suppose f ′(x1) < 0 at some x1, by continuity f ′(x2) = 0 at some x2 between
x0 and x1, contradiction holds. Hence f ′ is positive everywhere. Similarly, it is negative
everywhere when it is negative at some point.

⇐. Let us assume f ′ is always positive (the other case can be treated similarly.) Let
x < y in [a, b]. By the mean value theorem, there is some z ∈ (x, y) such that f(y) −
f(x) = f ′(z)(y − x) > 0, so f is strictly increasing. According to an old result in 2050,
a continuous, strictly increasing function maps [a, b] to the interval [f(a), f(b)] and its
inverse g is continuous. Then we can use the Carathedory Criterion in 2060 to show that
g is differentiable and, in fact, satisfies g′(f(x)) = 1/f ′(x).

7. Consider the function

f(x) =
1

2
x+ x2 sin

1

x
, x 6= 0,

and set f(0) = 0. Show that f is differentiable at 0 with f ′(0) = 1/2 but it has no local
inverse at 0. Does it contradict the inverse function theorem?

Solution. |f(x) − f(0) − (1/2)x| = |x2 sin(1/x)| = O(x2), hence f is differentiable at 0
with f ′(0) = 1/2. Let xk = 1/2kπ, yk = 1/(2kπ + 1), then f ′(xk) = −1/2, f ′(yk) = 3/2.
Then it is clear that f is not injective in Ik = (yk, xk). Since any neighborhood of 0
must include contain some Ik, this shows that f it has no local inverse at 0. It does not
contradict the inverse function theorem because f ′ is not continuous at 0.

Note. This problem shows that the C1-condition is needed in the Inverse Function Theo-
rem.

8. Consider the mapping from R2 to itself given by f(x, y) = x − x2, g(x, y) = y + xy .
Show that it has a local inverse at (0, 0). And then write down the inverse map so that
its domain can be described explicitly.

Solution. Let u = x− x2, v = y+ xy. The Jacobian determinant is 1 at (0, 0) so there is
an inverse in some open set containing (0, 0). Now we can describe it explicitly as follows.
From the first equation we have

x =
1±
√

1− 4u

2
.

From u(0, 0) = 0 we must have

x =
1−
√

1− 4u

2
.

Then

y =
v

1 + x
=

2v

1−
√

1− 4u
.

We see that the largest domain in which the inverse exists is {(u, v) : u ∈ (0, 1/4), v ∈ R}.

9. Let F be a continuously differentiable map from the open U ⊂ Rn to Rn whose Jacobian
determinant is non-vanishing everywhere. Prove that it maps every open set in U to an
open set, that is, F is an open map. Does its inverse F−1 : F (U)→ U always exist?

Solution. Let E be an open set in U . We need to show that F (E) is open. Let y0 ∈ F (E)
and x0 ∈ E satisfy F (x0) = y0. By the Inverse Function Theorem (applied to F : E →
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Rn), there are open sets V (in E) and W containing x0 and y0 respectively such that
F (V ) = W . In particular, W ⊂ F (E). Since W is open and contains y0, there is some
Br(y0) ⊂W ⊂ F (E), so F (E) is open.

The inverse may not exist. Consider the map (r, θ)→ (r cos θ, r sin θ) in (r, θ) ∈ (0,∞)×R ,
whose Jacobian determinant is always nonzero. However, it has no inverse.

10. Consider the function

h(x, y) = (x− y2)(x− 3y2), (x, y) ∈ R2.

Show that the set {(x, y) : h(x, y) = 0} cannot be expressed as a local graph of a C1-
function over the x or y-axis near the origin. Explain why the Implicit Function Theorem
is not applicable.

Solution. The Jacobian matrix of h is singular at (0, 0), hence the Implicit Function
Theorem cannot apply. Indeed, h(x, y) = 0 means either x− y2 = 0 or x− 3y2 = 0. The
solution set of {(x, y) : h(x, y) = 0} consisting of two different parabolas passing the origin.


